Utilities > Interpolation > Lagrange
Lagrange
Purpose
Lagrange interpolation polynomials in interval -1<xi<1
Synopsis
lp = Lagrange (degree,deriv,xi)
Description
LAGRANGE Lagrange interpolation polynomials in interval -1<xi<1
LP = LAGRANGE(DEGREE,DERIV,XI)
the function determines the values of Lagrange interpolation polynomials of degree DEGREE
and derivative order DERIV at integration points in vector XI;
the values are returned in array LP with rows representing the different Lagrange
polynomials of degree DEGREE and columns representing the values at points XI
NOTE: XI need to be supplied in the interval -1<xi<1
EXAMPLE: Lagrange(2,1,xi) returns the first derivative of quadratic Lagrange polynomials at xi
To go from the interval [-1;+1] to the interval [0;L]:
Jac = 0.5*L; xP = Jac.*(1.+xi);
lp = lp./(Jac^deriv);
Cross-Reference Information
This function calls:
- Mass4Taper2dFrm_wDF consistent mass matrix for tapered 2d frame element with displ interpolation
- LE2dFrm_w2ndOrdDF 2d LE frame element with moderate deformations under linear or NL geometry
- LE2dFrm_w2ndOrdFF 2d LE frame element with moderate deformations under linear or NL geometry
- LE2dFrm_wVarIDF 2d LE frame element with variable cross section under linear or NL geometry
- LE2dFrm_wVarIFF 2d LE frame element with variable cross section under linear or NL geometry