GPYS
Purpose
function value, gradient and Hessian of polynomial yield surface
Synopsis
[f,g,h] = GPYS (GPYSC,xyz,ScVec)
Description
GPYS function value, gradient and Hessian of polynomial yield surface [F,G,H] = GPYS (GPYSC,XYZ,SCVEC) the function determines the value F(X,Y,Z), the gradient G(X,Y,Z), and the Hessian matrix (2nd derivative) H(X,Y,Z) of F at a point XYZ for a general polynomial yield surface with coefficients GPYSC SCVEC is a scale vector for the variables X, Y, and Z G = the gradient (normal) of the yield surface = [dF/dX; dF/dY; dF/dZ] H = the Hessian (2nd deriv) of the yield surface = dG/dXYZ = [d2(F)/d(X)^2 d2(F)/d(X)d(Y) d2(F)/d(X)d(Z); d2(F)/d(Y)d(X) d2(F)/d(Y)^2 d2(F)/d(Y)d(Z); d2(F)/d(Z)d(X) d2(F)/d(Z)d(Y) d2(F)/d(Z)^2] The coefficients of the polynomial yield surface are specified as follows general 3d case GPYSC = [d1 a1 b1 c1; d2 a2 b2 c2; d3 a3 b3 c3; ...] for F = Sum_i (di*(X^ai)*(Y^bi)*(Z^ci)) general 2d case GPYSC = [c1 a1 b1; c2 a2 b2; c3 a3 b3; ...] for F = Sum_i (ci*(X^ai)*(Y^bi))
Cross-Reference Information
This function calls:
- BInel2dFrm_wEPLHNMYS 2d elasto-plastic, linear hardening basic frame element