Solution_Library > Transient_Analysis > ModalAnalysis
ModalAnalysis
Purpose
determines modal response history for given transient loading
Synopsis
[omega,Ueig,Y_t,Ydot_t,Yddot_t] = ModalAnalysis (option,Kf,M,Loading,Deltat,zeta,nmod)
Description
MODALANALYSIS determines modal response history for given transient loading [OMEGA,UEIG,Y_T,YDOT_T,YDDOT_T] = MODALANALYSIS (OPTION,KF,M,LOADING,DELTAT,ZETA,NMOD) the function determines the response history of a multi-dof structural model with stiffness matrix at free dofs KF and consistent mass matrix or lumped mass vector M under given transient loading in data structure LOADING for the lowest NMOD (default=all) eigenmodes or NMOD Ritz vectors with damping ratios in row vector ZETA (default=0); the time step of integration is DELTAT; OPTION = 'eig' uses nmod eigenvectors, while OPTION = 'Ritz' uses nmod Ritz vectors in the modal analysis; the function returns NMOD eigenfrequencies of the structural model in row vector OMEGA, the eigenmode or Ritz vector shapes in array UEIG arranged columnwise (column no=mode no), and the response history of each eigenmode or Ritz vector in array Y_T arranged columnwise (column no=mode no), the velocity history of each eigenmode or Ritz vector in array YDOT_t, and the acceleration history of each eigenmode or Ritz vector in array YDDOT_t the data structure LOADING has the following fields LOADING.Uddref = vector of reference acceleration values at model dofs Pref = vector of reference load values at model dofs U0 = vector of initial displacement values at model dofs Udot0 = vector of initial velocity values at model dofs FrcHst = force time history in field Value AccHst = acceleration time history in field Value
Cross-Reference Information
This function calls:
- EigenMode determines eigenfrequencies and eigenmodes of structural model
- LDRitzVectors generation of mass and stiffness orthogonal Load Dependent Ritz vectors
- LSDOF_LinearWilson transient response of linear SDOF system by exact integration of piecewise linear excitation
- ModeDecomposition determines eigenmode participation factors of given vector V