Utilities > Interpolation > Lagrange
Lagrange
Purpose
Lagrange interpolation polynomials in interval -1<xi<1
Synopsis
lp = Lagrange (degree,deriv,xi)
Description
LAGRANGE Lagrange interpolation polynomials in interval -1<xi<1 LP = LAGRANGE(DEGREE,DERIV,XI) the function determines the values of Lagrange interpolation polynomials of degree DEGREE and derivative order DERIV at integration points in vector XI; the values are returned in array LP with rows representing the different Lagrange polynomials of degree DEGREE and columns representing the values at points XI NOTE: XI need to be supplied in the interval -1<xi<1 EXAMPLE: Lagrange(2,1,xi) returns the first derivative of quadratic Lagrange polynomials at xi To go from the interval [-1;+1] to the interval [0;L]: Jac = 0.5*L; xP = Jac.*(1.+xi); lp = lp./(Jac^deriv);
Cross-Reference Information
This function calls:
- Mass4Taper2dFrm_wDF consistent mass matrix for tapered 2d frame element with displ interpolation
- LE2dFrm_w2ndOrdDF 2d LE frame element with moderate deformations under linear or NL geometry
- LE2dFrm_w2ndOrdFF 2d LE frame element with moderate deformations under linear or NL geometry
- LE2dFrm_wVarIDF 2d LE frame element with variable cross section under linear or NL geometry
- LE2dFrm_wVarIFF 2d LE frame element with variable cross section under linear or NL geometry